
[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[727-731]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Multi-Step Verification Environment for a Chip Design using SoC platform
Je-Hoon Lee and Duk-Gyu Lim

Div of Electronics, Infnormation and Communication Eng., Kangwon National University, Samcheok
Campus, 1 Joongang-ro, Samcheok, Gangwon-do, 245-711, Rep. Of Korea

limdg@kangwon.ac.kr
Abstract

This paper presented an efficient verification strategy for the platform based design. A goal of the
verification task is to detect all design faults and provide with full verification coverage at the earlier design. The
proposed verification strategy employed iterative verification stages. For a case study, this strategy was used in a
verification of a modem chip design complying with IEEE 802.11a standard. It was successfully verified the entire
design functionality and its interface with 100% coverage in shorter design cycles.

Keyword : SoC (system on chip), verification, platform-based SoC.

Introduction
 Benefits of SoC solutions are reduced size, low
cost, lower power consumption and increased
performance. However, design complexity is drastically
increased. Recent technological advancements yield an
integrating numerous functions into a single chip [1-2].
The number of IPs in a single chip continuously
increases making complexity a major design problem.
The platform based design methodology is widely
adopted for designers to over-come this design
complexity. Thus, the designers use predefined
architectures and IPs to reduce design time and
complexity [1-3]. It, however, requires a proper
simulation and verification environment. Designers
usually develop a custom IP first. In order to make a full
system, they add the custom IP into a pre-defined
architecture with some standard IPs. In this case,
designers must verify the custom IP at first, and then the
IP must be verified within the entire system. This
verification task must consider several issues such as
verification coverage, time-to-market and so on.
Different verification coverage metrics are defined to
assess the design adequately such as function cover-age,
statement coverage, branch coverage, interface coverage.
None are sufficient to prove a design works, but all are
helpful in pointing out areas of the HDL not yet tested.
Nowadays time-to-market issue presses a product
developing time. The verifica-tion task, however,
occupies 30-70% of whole product developing time [4-
7]. It is very important to carry out the verification task
in shorter design cycles.
 This paper deals with these issues and presents
an efficient verification strategy for the platform based
SoC design and illustrates an experimental design
complying with IEEE 802.11a WLAN standard that was

verified by this strategy. The paper organized as follows.
Chapter 2 gives a short description of the experimental
design of IEEE 802.11a baseband processor. Chapter 3
introduces proposed verification strategy in detail.
Chapter 4 illustrates verification results and discussions.
Finally, Chapter 5 gives a conclusion.

Verification Strategy

The verification task is to detect and eliminate
all design faults as earlier as possible. In order to detect
all design faults, the verification task should give full
coverage. It includes function coverage, statement
coverage, branch coverage and interface coverage. The
function coverage checks every function. The statement
coverage checks each line of HDL. The branch and
interface coverage confirm each direction of every
branch and interfacing the blocks in the entire system.
The verification tools need a perfect verification
environment. It takes all possibilities that must be
verified. In addition, the verification environment
concerns the verification time. The verification time is
categorized by two sub tasks fault detection and fault
elimination.

This paper presents an efficient verification
strategy for the platform based SoC design and illustrates
an experimental design complying with IEEE 802.11a
WLAN standard.

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[727-731]

Figure 1. IEEE 802.11a WLAN baseband processor

The IEEE 802.11a is a standard for the
baseband processor of a WLAN communication system
at 5GHz [8]. It employs an orthogonal frequency-
division multiplexing (OFDM) with 52-sub carriers that
gives the maximum data rate of 54 Mbit/s. The data rate
depends on a radio channel such as 48, 36, 24, 18, 12, 9
then 6 Mbit/s. The basic principle of OFDM is to divide
a high-rate data streams to multiple sub carriers so that
they transmit data in parallel over multiplexed
orthogonal sub carriers.

The experimental baseband processor
complying with 802.11a standard has major blocks of
transmitter, receiver’s codec, modem, interfaces with
Medium Access Control (MAC) layer and the front-end
RF circuit as shown in Figure 1. The transmitter
comprises a codec, a modulator and IFFT blocks. The
receiver includes a synchronization block, a FFT, an
equalizer, a demodulator and a Viterbi decoder in the
codec. We apply the HW/SW co-design technique to
design the baseband processor. The MAC functions is
implemented with C/C+. The target SoC chip includes
the baseband IP, an ARM processor for the MAC and an
AMBA bus system.

The proposed verification strategy is shown in
Figure 2. We verify a design in 3 steps simulation,
emulation and firmware level implementation using a
SoC platform. At the first step, we verify a circuit at
simulation level with test benches that confirms system
behavior [4]. It takes much time to detect the faults even
though it is more suitable to eliminate detected faults. At
the second step, the circuit is verified on a HW emulator.
The HW emulator is suitable for fault detection because
of its high speed and flexible test benches with C/C+. At
the third level, we employ a platform based verification
based on a HW/SW co-emulator.

In the proposed verification flow, the circuit
level simulation at step 1 eliminates major faults. A HDL
simulator checks simulation waveform of the design as

shown in Figure 2a. We use an FPGA based emulator at
the step 2. The verification is performed on the emulator
through various flexible test benches in C/C++. The
emulator dumps data to sample signals and to store them
in the internal memory of the emulator as shown in
Figure 2b. The fault is detected by checking the output of
the emulator or waveforms dumped in. The data in the
memory are sent to the host computer after the emulation
is done. It provides electronic waveform for a VCD
format. In the verification system, the dumping step is
optional that is only activated when it is requested.
For example, the dumping process is selected if the
emulation output is not enough to detect a fault. This
flexible solution provides high verification productivity.
However, these two steps detect and fix bugs of a
function block. It is not sufficient to detect bugs of an
interface and the whole system. Step 3 detects faults
associated with a hardware/software interface and a
system integration on a SoC platform as shown in Figure
2c.

The baseband processor is synthesized and
mapped into a HW emulator iProve from Dynalith [9].
Figure 3 shows the verification environment. The MAC
and testbench are implemented in C/C++ on a host PC.
The host PC and the HW emulator is connected through
a PCI bus. A specific API (Application Programming
Interface) layer in the iProve makes transactions between
a C/C++ model and a Modelsim model for the baseband
processor. Such configuration provides HW/SW co-
development and co-verification including a source-level
debugging through a C/C++ debugger and a waveform-
based hardware debugging through a FPGA dumping
process.

The platform based verification makes possible
to verify the hardware/software interface and system
integration on a platform. It removes a remaining fault
before the system integration. Figure 4 shows the
platform based verification environment. The platform
consists of the Probase [10] and the iProve. The Probase
contains an ARM core module, an AMBA bus,
memories, and some peripherals, while the iProve
accommodates the baseband processor. The HW/SW co-
development and co-verification are possible because it
includes a source-level debugging with In Circuit
Emulation (ICE) and waveform-based hardware
debugging through the iProve.

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[727-731]

Figure 1. Three staged verification strategy

Figure 3. Emulation based verification

Figure 4. Platform based verification

Verification Results

This chapter summarizes the verification results.
Figure 5 shows the comparison result of different
verification approaches used in the proposed verification
environment in term of verification speed. The
simulation based verification (SBV) shows the lowest
speed. The emulation based verification (EBV) has the
highest speed. The platform based verification (PBV)

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[727-731]

shows lower verification performance than EBV because
PBV has two kinds of the SoC platform. It is a prototype
of a SoC including an ARM processor, an AMBA bus
and the baseband processor. The transmission speed is
limited by the physical connection between these boards.
Figure 6 shows verification coverage of each verification
environment. The SBV has about 50% coverage
accounting function and statement coverage. Note that
we assume that each verification metrics has 25% of the
full verification coverage, and then the SBV’s
verification coverage would be 50% of the full
verification coverage. The EBV is able to fulfill the
function coverage, statement coverage and branch
coverage because its simulation speed is very high. The
PBV shows reasonable emulation speed then it can report
all metrics including interface coverage.

Figure 5. Throughput of a baseband processor's transmitter

and receiver in different verification approaches

Figure 6. Verification coverage of each verification method

Figure 7. Setup time to start verification

Figure 7 shows the setup time to start

verification for each verification environment. The SBV
needs 5 minutes to initiate new verification. But EBV,
PBV take much longer time to initiate a new verification
because it starts from synthesis of HDL source codes to
FPGA download.

We assume that the verification time can be
classified by two sub tasks fault detection and fault
elimination. Figure 8 shows the time breakdown of the
fault detection and elimination of the verification task. In
the proposed verification strategy, the fault elimination
time is the sum of all simulations. The fault detection is
from all the verification steps. But most fault detection is
achieved by the EBV. According to this verification
approach, the total verification time reduces.

1

10

100

1000

10000

100000

1000000

SBV EBV PBV

Verification methods

T
h

ro
u

gh
p

u
t o

f b
as

eb
an

d
 p

ro
ce

ss
or

's

tr
an

sm
is

si
on

 a
n

d
 r

ec
ei

vi
n

g
(b

yt
e/

se
c)

802.11a baseband processor design (gate count is ~ 1,000,000)

0

20

40

60

80

100

120

SBV EBV PBV

Verification methods

C
ov

er
ag

e
in

 p
er

ce
n

ta
ge

 (
%

)

1

10

100

1000

10000

100000

1000000

SBV EBV PBV

Verification methods

T
h

ro
u

gh
p

u
t o

f b
as

eb
an

d
 p

ro
ce

ss
or

's

tr
an

sm
is

si
on

 a
n

d
 r

ec
ei

vi
n

g
(b

yt
e/

se
c)

802.11a baseband processor design (gate count is ~ 1,000,000)

[Lee, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[727-731]

Figure 8. Total verification time

Conclusion

This paper presents an efficient verification
environment for the platform based SoC design. The goal
of the verification task is to detect all design faults and to
eliminate with full verification coverage as earlier
design. The proposed verification strategy employs
several iterative steps verifying a design. For a case
study, we designed an IEEE 802.11a baseband processor
as a SoC with an ARM and an AMBA platform. The
design verification covers whole functionality and its
interface. The proposed environment has an iProve is
used as an emulator hardware carrying 6 million gates
FPGA and a SoC platform Probase has an ARM9
processor and a million gates of FPGA. The simulation
results show 100,000 times higher verification speed
compared to a conventional RTL level simulation for
emulating an IEEE 802.11a baseband processor.

References

[1] S. Sarkar, S. Chandar and S. Shinde, “Effective
IP reuse for high quality SoC design,” Proc. of
ISOCC 2005, pp. 217-224, Sept. 2005.

[2] A. S. Vincentelli, G. Martin, “Platform-Based
Design and Software Design Methodology for
Embedded Systems,” IEEE Design & Test of
Computers, pp. 23-33, Dec. 2001

[3] M. Keating and P. Bricaud, “Reuse
Methodology Manual,” Kluwer Academic
Publishers, 1998

[4] K. Wakabayashi, T. Okamoto, "C-based SoC
design flow and EDA tools: an ASIC and system
vendor perspective," IEEE Transactions On
Computer-Aided Design Of Integrated Circuits
And Systems, Vol. 19, No. 12, pp. 1507-1522,
Dec. 2000.

[5] R. Jindal, K. Jain, "Verification of Transaction-
Level SystemC models using RTL Testbenches,"
Proc. of MEMOCODE 2003, pp. 199-203, Jun.
2003

[6] C. Y. Wang, S. W. Tung, and J. Y. Jou, "An
Automorphic Approach to Verification Pattern
Generation for SoC Design Verification Using

Port-Order Fault Model," IEEE Transactions
On Computer-Aided Design Of Integrated
Circuits And System, Vol. 21, No. 10, pp. 1225-
1232, Oct. 2002

[7] M. Cupak, F. Catthoor, and H. J. De Man,
"Efficient System-Level Functional Verification
Methodology for Multimedia Applications,"
IEEE Design & Test of Computers, Vol. 20, No.
2, pp. 55-64, Apr. 2003

[8] ISO/IEC, Wireless LAN MAC and PHY
Specifications —High-Speed Physical Layer in
the 5 GHz Band, ISO/IEC 8802-
11:1999(E)/Amd 1:2000(E), New York IEEE,
2000.

[9] http://www.dynalith.com/ipr, Jan. 200
[10] C. M. Kyung, “ARM and FPGA based Co-

Emulator for SoC Design and Verification,”
Center for SoC Design Technology at KAIST,
Apr. 2005

